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Abstract
Introduction: Pain phenomenology in patients with fibromyalgia syndrome (FMS) shows considerable overlap with neuropathic
pain. Altered neural processing leading to symptoms of neuropathic pain can occur at the level of the spinal cord, and 1 potential
mechanism is spinal disinhibition. A biomarker of spinal disinhibition is impaired H-reflex rate-dependent depression (HRDD).
Objectives: This study investigated whether patients with FMS exhibit evidence of spinal disinhibition.
Methods: Thirty-one individuals with FMS and 20 healthy volunteers underwent testing of Hoffman reflex including HRDD, along
with assessment of clinical signs and symptoms, pressure pain thresholds, temporal summation of pain (wind-up), and conditioned
pain modulation (CPM). Small nerve fibre structure was quantified using intraepidermal nerve fibre density and corneal confocal
microscopy.
Results:Patientswith FMShad significantly impairedHRDD at 1Hz (P5 0.026) and 3Hz (P5 0.011) and greater wind-up ratio (P5
0.008) comparedwith healthy controls. Patients with themost impaired HRDD also had themost inefficient CPMbut HRDDwas not
associated with wind-up. Both HRDD and CPM were most impaired in patients with a shorter duration of disease.
Conclusion:Wedemonstrate for the first time that peoplewith FMS showevidence of spinal disinhibition, which ismost dominant in
shorter duration of disease and may represent a putative mechanism of pain generation in FMS. Identifying people with impairment
of central pain processing at an early stage may provide opportunities for targeted mechanistically directed interventions.
Longitudinal studies are warranted to tease out the precise contribution of these mechanisms.
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1. Introduction

Fibromyalgia syndrome (FMS) is a common but poorly un-
derstood condition. It is a frequent cause of chronic widespread
pain, often accompanied by fatigue, cognitive impairment, sleep,
and mood disturbances.7 This complex and heterogenous
syndrome presents challenges to both diagnosis and treatment,6

partly due to a lack of understanding of its pathoaetiology. It is

debatedwhether the symptoms and signs of FMS reflect primarily
peripheral or central sensitisation.8,10,15,40,44,65 People with FMS
frequently report symptoms and signs seen in neuropathic pain
including paraesthesia, hyperalgesia, and allodynia. Indeed,
a subset of patients with FMS develops small fibre pathol-
ogy,15,25,63 and microneurography studies in FMS demonstrate
c-fibre nociceptor sensitisation.54
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Whilst in some patients with pain syndromes, the underlying
pathophysiology relates to peripheral nerve fibre degeneration
and sensitisation, the functional significance of small fibre
abnormalities and their relation to symptoms in FMS remains
unclear.17,35,62 Furthermore, it is recognised that in FMS changes
in the brain2,16,51 and spinal cord56,68 may generate, maintain,
and modulate pain signalling. Both reduced pain modulation with
inefficient descending pain inhibition,36,69 and/or increased
temporal summation of pain,55 are reported in patients with
FMS. However, recent studies in FMS using sensitivity-adjusted
stimuli demonstrate effective processing of nociceptive
input.55–58 Another potential mechanism of central sensitisation
is spinal disinhibition, where disruption of intrinsic ligand-gated
ionotropic inhibitory systems in the dorsal horn of the spinal cord
leads to the amplification of incoming peripheral signals and
increased ascending nociceptive drive.50 Spinal disinhibition has
been extensively studied in preclinical neuropathic and inflam-
matory pain models50 and is proposed as a novel treatment
target. However, the lack of a biomarker of spinal disinhibition as
a pain-generating mechanism in humans has hindered the
investigation of spinal inhibitory dysfunction in clinical pain
conditions.

Noninvasive investigation of human spinal circuits using
neurophysiological methods, for example, the Hoffman reflex
(H-reflex), can provide valuable information about excitation and
inhibition in the spinal cord.43 Hoffman reflex testing elicits a direct
M wave and a longer latency trans-spinal H wave. The H-wave
response is classically considered a monosynaptic circuit
between type 1a muscle spindle afferents and motoneurons in
the ventral spinal cord. However, it is subject to modification by
intrinsic inhibitory oligo- and polysynaptic spinal circuits as well as
supraspinal influences.4,34 These influences modulate the
H-wave amplitude by altering the balance between excitatory
and inhibitory inputs in the H-reflex pathway. An example, the
diminution of the amplitude of the H wave with consecutive
stimulations is termed H-reflex rate-dependent depression
(HRDD).28

Translational studies indicate that impaired HRDD is a bio-
marker of spinal disinhibition, likely due to chloride dysregulation
in the dorsal horn of the spinal cord, in animals and humans.33,34

We have previously demonstrated that HRDD is impaired in
patients with painful diabetic neuropathy.38,68 Whether patients
with FMS have evidence of spinal disinhibition is unknown. The
primary aim of this study was to determine, using HRDD, whether
patients with FMSdisplay evidence of spinal disinhibition.We also
aimed to determine whether HRDD is associated with presumed
changes in central processing, wind-up, and conditioned pain
modulation (CPM), as well as primary psychophysical character-
istics of FMS.

2. Methods

Thirty-one patients with FMS were recruited to the DEFINE-FMS
study (South West—Frenchay Research Ethics Committee—20/
SW/0138) from physiotherapy-led musculoskeletal fibromyalgia
services, pain clinics, as well as community-based fibromyalgia
patient support groups. Patients underwent testing of HRDD,
assessment of pressure pain thresholds (PPTs), temporal
summation of pain and CPM, corneal confocal microscopy,
quantification of intraepidermal nerve fibre density (IENFD) using
skin biopsy, and completion of questionnaires to assess the
presence of pain, neuropathic symptoms, and the impact of FMS
on day-to-day life. To be included in this study, people with FMS
aged $18 years satisfied the modified American College of

Rheumatology 2016 diagnostic criteria.66 Twenty healthy volun-
teers (HV) were also recruited.

2.1. Assessment of H-reflex rate-dependent depression

For H-reflex studies, tibial nerve stimulation was performed
using 1-ms square wave monophasic pulses delivered using
surface silver–silver chloride electrodes, to the popliteal fossa.
Surface silver–silver chloride recording electrodes with a di-
ameter of 9 mm were placed on the long axis of the soleus
muscle (Fig. 1A). Hoffman reflex recruitment curves were
obtained to determine peak–peakH-wave andM-wavemaximal
amplitude, by incrementing stimulation current by 1 mA (1-ms
duration). A random interstimulation interval with a minimum of
10 seconds was observed. For HRDD, a submaximal stimulus
strength (to achieve a response of 75% of maximum H-reflex on
the rising phase of the recruitment curve) was used. H-wave
responses were recorded by assessing trains of 10 stimuli
delivered at 1 and 3 Hz, to demonstrate that rate dependency is
preserved in individuals with FMS. Traces were inspected to
ensure they were free of volitional electromyographic activity.
Hoffman reflex rate-dependent depression was calculated as
the mean H-reflex amplitude of responses 2 to 5 of a stimulus
train, expressed as a percentage of the amplitude of the first
recorded H-reflex in the train67 (Fig. 1B, C). Therefore, a higher
value of HRDD indicates a smaller degree of depression, which
we will refer to as impairment of HRDD. Pain scores (NRS 0–10)
were collected following each stimulus train.

Figure 1. The H-reflex and HRDD. (A) Schematic representation for eliciting
and recording the H-reflex (created with Biorender). (B) Representative trace of
HRDD, using 1-Hz stimulation, in an individual with normal HRDD. (C)
Representative trace of HRDD, using 1-Hz stimulation, in an individual with
impaired HRDD. H-reflex, Hoffman reflex; HRDD, H-reflex rate-dependent
depression.
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2.2. Questionnaires

Participants completed 5 questionnaires to assess the presence of
pain, neuropathic symptoms, and the impact of FMS on day-to-
day life. The Revised Fibromyalgia Impact Questionnaire was
administered to determine the severity of participants’ symptoms
and functional impairment, including physical impairment, ability to
work, restfulness, and mood.1 The Neuropathy Symptom Profile
was used to assess sensory, autonomic, and motor neuropathy
symptoms.14 The small Fibre Neuropathy Screenings List evalu-
ated symptoms of purely small nerve fibre-related neuropathy.27

The PainDETECT screening tool evaluated neuropathic pain
symptoms.18 An additional measure of current pain score was
assessed using the McGill visual analogue scale (0–10).42

2.3. Corneal confocal microscopy

Participants underwent corneal examination with the Heidelberg
Retina Tomograph 3 with Rostock Cornea Module (Heidelberg

Eye Explorer; Heidelberg Engineering GmBH, Heidelberg,
Germany), and images of the corneal subbasal nerve plexus
were captured following an established protocol.59 Image
selection wasmasked to the FMS/control group, and the average
number of images for analysis per participant was 16. Automated
analysis was conducted using ACCMetrics software (ACCMet-
rics: Malik Lab, Imaging Science, University of Manchester).
Three corneal nerve parameters were quantified from each
image: (1) corneal nerve fibre density (total number of main nerve
fibres per square millimetre of corneal tissue [fibre no/mm2]); (2)
corneal nerve branch density (number of branches of all main
nerve fibres per square millimetre of corneal tissue [branch no./
mm2]); and (3) corneal nerve fibre length (the total length of all
main nerve fibres and branches [mm/mm2] within the images).59

2.4. Skin biopsy

Participants underwent punch biopsies to assess IENFD of the
lateral proximal and distal thigh and distal leg, in accordance with
a previously published protocol.3

2.5. Pressure pain threshold

Pressure pain threshold was evaluated using a pressure algo-
meter (FDN200; Wagner Instruments, Riverside, CT) with a blunt
contact area of 1 cm2 placed on the thenar eminence. The
thresholdwas determined as the arithmeticmean of 3 recordings,
and the raw data were log transformed and converted into
a z-score to normalize the data for age, sex, and body site tested.
Positive z-score values denote a gain in function and negative
z-scores denote a loss of function.52 Values less than21.96 (loss
of function) or greater than 1.96 (gain of function) are considered
abnormal.

2.6. Temporal summation of pain—wind-up

Wind-up ratio was assessed using a 256-mN pinprick stimulator.
If the participant found testing too painful, a 128-mN pinprick
stimulator was used. A train of 10 stimuli was applied to the
dorsum of the right arm at a frequency of 1 per second. A pain
score, using a 0 to 100 numerical rating scale, was recorded for
the initial stimulus and the subsequent train of stimuli. The wind-
up ratio was calculated as the arithmetic mean of the pain
intensity rating for the series of stimuli divided by the arithmetic
mean of the pain intensity rating for the single stimulus. The raw
data were log transformed and converted into a z-score to
normalize the data for age, sex, and body site tested. Positive
z-score values denote a gain in function, and negative z-scores
denote a loss of function.52 Values less than 21.96 (loss of
function) or greater than 1.96 (gain of function) are considered
abnormal.

2.7. Conditioned pain modulation

Conditioned painmodulation was used to assess the efficiency of
diffuse noxious inhibitory control. The pressure pain threshold on
the right abductor pollicis brevis was used as the test stimulus. A
pressure algometer (FDN200; Wagner Instruments) with a blunt
contact area of 1 cm2 was placed on the skin above the abductor
hallucis muscle on the right hand. Pressure was applied with
increasing intensity at a rate of 0.5 kg (50 kPa)/s. The participant
indicated the moment the sensation of pressure changed to an
additional painful “burning,” “stinging,” or “aching” sensation, and

Figure 2. Conditioned pain modulation and temporal summation of pain in
FMS. Box and whisker plot of CPM and temporal summation of pain (wind-up)
in patients with FMS (red) and healthy volunteers (purple). Statistically
significant P values are shown (Mann–Whitney). CPM, conditioned pain
modulation; FMS, fibromyalgia syndrome; PPT, pressure pain threshold;
WUR, wind-up ratio.

Figure 3. Hoffman reflex rate-dependent depression in FMS. Hoffman reflex
rate-dependent depression at 1 and 3 Hz in patients with FMS (red circles) and
healthy volunteers (purple circles). Statistically significant P values are shown
(Mann–Whitney). FMS, fibromyalgia syndrome; HRDD, H-reflex rate-
dependent depression.
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the respective value on the algometer was recorded. The test was
repeated 3 times with a break of 10 seconds in between, and the
mean value was recorded. The cold-pressor test was used as the
conditioning stimulus, with the left hand of the patient immersed
up to the wrist in a water bath of melting ice water for up to 180
seconds or as long as the participant could tolerate, with
a minimum time of 45 seconds. Pain ratings, using a numerical
rating scale of 0 to 100, were recorded every 15 seconds.
Following the removal of the hand from the water bath, the test
stimuli were repeated on the right hand (non-submerged) as
detailed above. The CPM effect was calculated as the difference
(preconditioning stimulus minus post) in raw PPTs. A negative
value indicates efficient CPM.

2.8. Statistical methods

Statistical analyseswereperformedusingGraphPadPrismstatistical
software (GraphPad Software, Inc, La Jolla, CA) and SPSS Version
29 (IBM). Continuous data (including HRDD, CPM, PPT, wind-up
ratio, IENFD, and corneal confocal microscopy (CCM) parameters)
were assessed for normality using quantile–quantile plots and
Shapiro–Wilk test.Normal distributeddatawere reported asmean6
SD and analysed using an unpaired t test (FMS/HV) for between-
group comparison. For nonnormally distributed data, the results
were reported as median 6 interquartile range (IQR) and analysed
usingMann–Whitney test (FMS/HV) andKruskal–Wallis test followed
by a Dunn test (short-duration FMS/long-duration FMS/HV) for
between-group comparison. Significance (P) was reported for
values reaching the significance threshold set at,0.05. Correlations
were performed using the Spearman rank test and expressed as
a coefficient (r) with P values. Categorical data were analysed using
x2 Fisher exact test of association.

3. Results

Table 1 details the demographic, biochemical, clinical, and
neuropathic characteristics of the study cohort. Data from 31
individuals with FMS and 20 healthy volunteers were included in
the analysis. The details of current pain medication are
documented in Supplementary Table 1 (http://links.lww.com/
PR9/A279). Systematic analysis of medication was not com-
pleted due to the large degree of variability.

3.1. Demographic, biochemical, and clinical characteristics

There was no difference in age, body mass index (BMI), or
glycated haemoglobin (HbA1c) between FMS and healthy
volunteers. In keeping with previous studies,19,29,46 approxi-
mately half (48.4%) of the individuals with FMS had IENFD below
the normative range for age and sex in at least 1 location and 24%
had an abnormality in corneal nerve fibre morphology.47,60 Whilst
mean IENFDs and CCM parameters in patients with FMS were
reduced compared with healthy volunteers, this did not reach
a level of significance. As expected, PPT (FMS: mean 3.79, SD
2.02; HV: mean 0.44, SD 1.68; P , 0.001) was reduced (gain of
function) in patients with FMS, and scores on pain and symptom
questionnaires (Revised Fibromyalgia Impact Questionnaire;
Small Fibre Neuropathy Screenings List; Neuropathy Symptom
Profile; PainDetect; visual analogue scale, all P , 0.001) were
higher in people with FMS compared with healthy volunteers.
Frequency and severity of anxiety (FMS:median 7.5, IQR 4–8 [n5
29/31]; HV: median 0, IQR 0–2 [n 5 6/20]; P , 0.001) and
depression (FMS: median 6, IQR 2–8 [n5 28/31]; HV: median 0,
IQR 0-0 [n 5 1/20]; P, 0.001) were higher in patients with FMS
compared with healthy volunteers.

3.2. Conditioned pain modulation and temporal summation
of pain

The level of CPM did not differ between people with FMS and
healthy volunteers. Temporal summation of pain was increased in
people with FMS compared with healthy volunteers (Fig. 2).

3.3. Hoffman reflex parameters

Table 2 details the H-reflex parameters in patients with FMS and
healthy volunteers.

There was no significant difference in Hmax, Mmax, or Hmax/
Mmax ratio between individuals with FMS and healthy volunteers.

3.4. Hoffman reflex rate-dependent depression

Individuals with FMS had impaired HRDD at 1 Hz (FMS: median
50.9, IQR 42.6–68.7; HV: median 41.8, IQR 34.6–57.5; P 5
0.026) and 3 Hz (FMS: median 46.r8, IQR 35.6–57.2; HV: median

Figure 4. Hoffman reflex rate-dependent depression during FMS disease progression. (A) Individual H-reflex rate-dependent depression (HRDD) data in patients
with FMS with short (7 years or less) and long (greater than 7 years) disease duration. Spearman correlation (rs) and P value are reported. (B) Group HRDD data in
patients with FMS with short (7 years or less) and long (greater than 7 years) disease duration and healthy volunteers. Kruskal–Wallis/Dunn test P values are
reported. (C) Conditioned pain modulation and duration of disease. Spearman correlation (rs) and P values are reported. (D) Hoffman reflex rate-dependent
depression andCPM. Spearman correlation (rs) andP values are reported. CPM, conditioned painmodulation; FMS, fibromyalgia syndrome; HRDD, H-reflex rate-
dependent depression.
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32.3, IQR 25.2–40.9; P 5 0.011) compared with healthy
volunteers (Fig. 3). Whilst a degree of overlap is observed, 13
patients with FMS (42%) had HRDD value (s) that fell outside the
normal range of the healthy volunteers (.65.8 [45.731 20.06] at
1 Hz, .51.3 [35.20 1 16.08] at 3 Hz). Pain scores obtained
during the HRDD trains were significantly higher in patients with
FMS compared with healthy volunteers (1 Hz; FMS: median 6.0,
IQR 4.0–6.23; HV: median 1.0, IQR 0–4.5; P 5 ,0.001. Three
Hertz; FMS: median 8.0, IQR 6.5–10; HV: median 4.0, IQR

1.25–6.25; P 5 ,0.01). However, these pain scores were not
associatedwith the degree of HRDD in either individuals with FMS
(1 Hz: P 5 0.180, rs 5 0.277; 3 Hz: P 5 0.387, rs 5 0.199) or
healthy volunteers (1 Hz: P5 0.471, rs5 0.192; 3 Hz: P5 0.408,
rs520.213). No significant correlations were observed between
HRDD and age, BMI, HbA1c, markers of small fibre pathology on
skin biopsy and corneal confocal microscopy, or any pain and
symptoms scores in individuals with FMS and healthy volunteers.

3.5. Hoffman reflex rate-dependent depression, conditioned
pain modulation, and duration of disease diagnosis

Individuals with FMS with the most impaired HRDD also had the
most inefficient CPM (rs 5 0.468, P 5 0.018), and both HRDD
(rs 5 20.418, P 5 0.019) and CPM (rs 5 20.440, P 5 0.028)
weremost impaired in patients with the shortest disease duration.
To further investigate these findings, patients with FMS were
divided into 2 groups based on the median duration of FMS
diagnosis.23 Patients with a short duration (7 years or less [n 5
18]) had significantly more impaired HRDD compared with
patients with a long duration (.7 years [n 5 13]) (Fig. 4).

Table 1

Demographic, biochemical, H-reflex rate-dependent depression, small nerve fibre parameters, and clinical characteristics in patients
with fibromyalgia syndrome and healthy volunteers.

FMS (n 5 31) HV (n 5 20) P

Sex (F/M) 29/2 15/5 0.060

Age (y) 49 (35–57) 43 (31–58) 0.105

Duration of diagnosis (y) 7 (3–10) — —

Duration of symptoms before diagnosis 4 (2–8) — —

BMI (kg/m2) 29.3 (22.9–34.3) 24.7 (23.4–73.0) 0.198

BP (systolic) (mm Hg) 129 6 18 126 6 12 0.760

BP (diastolic) (mm Hg) 81 12 76 6 0.058

HbA1c (mmol/mol) 36.1 6 5.2 31.2 6 7.8 0.309

Cholesterol (mmol/L) 5.0 6 1.1 4.8 6 0.8 0.498

Triglycerides (mmol/L) 1.5 6 0.8 1.4 6 0.7 0.731

CNFD 26.0 6 6.1 27.1 6 4.7 0.400

CNBD 34.9 6 15.7 42.6 6 22.9 0.196

CNFL 15.2 6 3.2 16.8 6 5.4 0.215

IENFD proximal thigh 8.7 6 4.2 11.3 6 5.5 0.502

IENFD distal thigh 9.0 6 5.1 10.7 6 8.2 0.441

IENFD distal leg 7.6 6 3.6 8.3 6 5.3 0.618

Pressure pain threshold (z-score) 3.79 6 2.02 0.44 6 1.68 <0.001

HRDD at 1Hz 50.9 (42.6–68.7) 41.8 (34.6–57.5) 0.026

HRDD at 3Hz 46.8 (35.6–57.2) 32.3 (25.2–40.9) 0.011

Depression (Y/N) 28/3 1/19 <0.001

Depression (score out of 10) 6 (2–8) 0 (0–0) <0.001

Anxiety (Y/N) 29/2 6/13 <0.001

Anxiety (score out of 10) 7.5 (4–8) 0 (0–2) <0.001

FIQR total (score out of 100) 76 (50–81) 0 (0–4) <0.001

SFNSL 47 (37–60) 2 (1–6) <0.001

PainDetect total (out of 38) 23 (17–28) 0 (0–1) <0.001

Neuropathy symptom profile 20 (16–25) 0 (0–1) <0.001

VAS current pain score 80 (68–88) 0 (0–17) <0.001
Parametric data are shown as mean6 SD and analysed using an unpaired t test. Nonparametric data are shown as median (interquartile range) and analysed using the Mann–Whitney test. Values reaching the significance

threshold set at ,0.05 are in bold.

BMI, body mass index; BP, blood pressure; CNFD, corneal nerve fibre density; CNBD, corneal nerve branch density; CNFL, corneal nerve fibre length; FIQR, fibromyalgia impact questionnaire (revised); HbA1c, glycated

haemoglobin; HV, healthy volunteers; HRDD, Hoffmann reflex rate-dependent depression; IENFD, intraepidermal nerve fibre density; SFNSL, small fibre neuropathy screening list; VAS, visual analogue scale.

Table 2

Hoffman reflex parameters in patients with fibromyalgia
syndrome and healthy volunteers.

FMS HV P

Hmax 3.70 (2.17–4.60) 2.21 (1.96–4.41) 0.534

Mmax 5.78 (4.11–8.20) 7.86 (4.61–8.80) 0.509

Hmax/Mmax ratio 0.59 (0.52–0.67) 0.31 (0.11–0.62) 0.094

Data are shown as median (interquartile range) and analysed using the Mann–Whitney test. Statistically

significant P values are shown (Mann–Whitney).

FMS, fibromyalgia syndrome; Hmax, maximum amplitude of the H wave; Hmax/Mmax ratio, ratio of the

maximum amplitudes of H and M waves; HV, healthy volunteers; Mmax, maximum amplitude of the M wave.
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4. Discussion

This study reports for the first time evidence of spinal disinhibition
in patients with FMS. Themain finding is an impairment of HRDD,
a biomarker of spinal inhibitory dysfunction, in ;40% of patients
with FMS. In addition, we provide evidence that this potential
mechanism of pain generation is more pronounced in shorter
duration of disease.

Multiple lines of evidence in preclinical studies indicate that
spinal disinhibition is a prominentmechanism for the amplification
of ascending nociceptive information in the context of both
neuropathic and inflammatory pain.11,34 The effects of this
disinhibition are to reduce the threshold for activation of
ascending nociceptive pathways to peripheral stimulation.32

Whilst spinal disinhibition could potentially arise from several
convergent pathways, a dominant mechanism appears to be the
disruption of the chloride balance of postsynaptic neurons so that
gamma-aminobutyric acid (GABA) ergic inputs into postsynaptic
cells become depolarising (or less hyperpolarising).13 An impor-
tant pathway leading to depolarising GABA in divergent pre-
clinical models (nerve injury, diabetes, inflammation) is an
increase in intracellular chloride due to a brain-derived neuro-
trophic factor (BDNF)-induced downregulation of the potassium/
chloride cotransporter 2 (KCC2).9,11,13,34 In support of a similar
mechanistic principle in humans, recordings from lamina I dorsal
horn neurons in ex vivo human spinal cord slice preparations also
indicate that BDNF can induce a depolarising switch in
GABAergic transmission.11

This study used HRDD, a noninvasive biomarker of spinal
inhibitory function, to investigate the presence of spinal disinhi-
bition in FMS. Hoffman reflex rate-dependent depression is
impaired in diabetic rodents that display both behavioural indices
of pain and BDNF-dependent depolarising GABA.33,38 Impor-
tantly, in rodents, HRDD is normalised by interventions (eg, BDNF
sequestration) that restore spinal inhibition and alleviate behav-
ioural indices of pain; and it becomes impaired following
interventions recapitulating the pathway to depolarising GABA
(eg, KCC2 inhibition) that evoke behavioural indices of pain.30,33

Although the spinal circuits underlying the deficits in HRDD are
not clear,34 these findings imply, at least in diabetic rodents, that
the same mechanism underlying spinal disinhibition and indices
of pain also results in impairment of HRDD. Underpinning the
translational potential of these findings, impairment of HRDD is
seen in individuals with painful diabetic neuropathy,38,68 most
evidently in those with prominent mechanical pain hypersensitiv-
ity relative to mechanical pain detection.39 Unlike for painful
diabetic neuropathy, currently, there is no parallel preclinical
evidence in FMS to link impaired HRDD with chloride dysregu-
lation in the dorsal horn of the spinal cord. Impairment of HRDD
has been demonstrated in individuals with obesity/impaired
glucose tolerance,53 for which there is an increased incidence in
FMS.12,70 However, the current data show no correlation
between obesity/impaired glucose tolerance and the degree of
HRDD impairment. Furthermore, no significant group-level differ-
ences in BMI/HbA1c were seen between healthy control
participants and individuals with FMS. Therefore, it seems unlikely
that the abnormal HRDD in FMS is attributable to a prediabetic
state or metabolic syndrome.

A previous investigation has demonstrated an increase in the
Hmax:Mmax ratio, which also provides a measure of excitatory-
inhibitory balance in the spinal cord,26 in individuals with FMS
compared with controls.61 We did not show any significant
alterations in the Hmax:Mmax ratio in individuals with FMS. Both
our current findings and the previous study are from a relatively

small cohort, potentially contributing to these differing findings.
However, the Hmax:Mmax ratio is distinct from HRDD, has
different underlying physiological mechanisms,26 and has not
been associated with spinal disinhibition in clinical or preclinical
studies in painful diabetic neuropathy.33,38 The nociceptive
withdrawal reflex (NWR) has also been used to probe spinal
excitability in chronic pain states37 with a reduction in threshold
being taken as a measure of central hyperexcitability. Whilst in
FMS, there is evidence of a reduced NWR threshold, the findings
areweak and there is considerable heterogeneity.64 Furthermore,
unlike impaired HRDD, alterations in the nociceptive withdrawal
reflex have not been linked to a specific pain mechanism.

Further evidence of altered processing in the spinal cord
comes from functional magnetic resonance imaging studies in
individuals with FMS. For example, resting-state functional
magnetic resonance imaging of the cervical cord in individuals
with FMS has demonstrated a decrease and increase in the
amplitude of low-frequency fluctuations in the dorsal and ventral
cord, respectively.41 The significance of these alterations in the
neural processes and whether they relate to spinal disinhibition or
impaired HRDD are uncertain. However, they do potentially
provide a link between dysfunction in predominant “sensory” and
“motor” regions of the spinal cord that could be relevant to
abnormalities in HRDD.

Psychophysical evidence of altered central
processing—specifically, enhanced temporal summation of pain
and inefficient diffuse noxious inhibitory control—has previously
been reported in FMS studies.22,49,55 Compared with healthy
volunteers, we found that temporal summation of pain to pinprick
stimuli was enhanced in people with FMS. Temporal summation
of pain is widely used as a proxy of processes causing wind-up in
the spinal cord,24 and our findings could implicate enhanced
wind-up in the spinal cord. However, although there is broad
agreement that temporal summation is enhanced in FMS across
studies,45 there is considerable interindividual heterogeneity and,
like for HRDD in this study, a lack of correlationwith clinical pain.48

Between study inconsistencies highlighted in a 2018 meta-
analysis revealed that disparate measurement and phenotyping
approaches relating to both wind-up and CPM, with the
parameters type and site of stimulation, age, sample size, and
medication control, may provide important sources of variabil-
ity.45 Indeed, more recent studies using sensitivity-adjusted test
stimuli suggest that individuals with fibromyalgia modulate
nociceptive input as effectively as healthy volunteers.56–58 Whilst
we did not use sensitivity-adjusted stimuli in our CPM paradigm,
our findings suggest that, in FMS, central mechanisms may
evolve over time; both HRDD and CPMweremost impaired in the
short duration of disease. Similar findings have been reported in
patients with pDPN, whereby patients with shorter pain duration
demonstrate less efficient CPM and higher temporal summation
but with the same level of pain as those with longer duration.23

Longitudinal studies are required to investigate the potential time-
dependency of central sensitisation mechanisms in FMS, but it is
possible that spinal disinhibition and/or alterations in descending
modulation could represent an initiating mechanism that sub-
sequently becomes maintained by other processes. If, as these
findings suggest, impaired central processing “normalises” with
chronicity of pain, it may also explain in part the variance of
findings in both research and clinical populations.22,49,57,58

Immune mechanisms have emerged as putative aetiopatho-
logical factors in FMS and have been linked to peripheral nervous
system dysfunction. Passive transfer of IgG from individuals with
FMS reproduces the sensory, motor, and pathological abnor-
malities in mice.21 The dominant hypothesis is that
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autoantibodies bind to satellite glial cells in the dorsal root ganglia
(DRG) and sensitise nociceptor fibres.21 Whether this leads to
secondary changes, including disinhibition, in the spinal cord is
not known. Furthermore, as only approximately 50% of individ-
uals display high levels of autoantibody binding to satellite glial
cells,31 there may be other aetiological mechanisms. We did not
measure antibody binding status in this study. Transfer of
neutrophils from individuals with FMS to mice also results in
reversible somatosensory hypersensitivity, neutrophil infiltration
of the DRG, and, interestingly, sensitisation of deep dorsal horn
neurons to noxious mechanical and thermal stimuli.5 This
highlights the capacity of immune-related mechanisms involving
the DRG to affect processing in neurons involved in central
nociceptor processing and, potentially, segmental spinal reflexes.
This is the likely case in painful diabetic neuropathy,34 where
spinal disinhibition related to chloride dysregulation and impaired
HRDD are likely secondary to alterations in peripheral nerves.
Among healthy individuals, HRDD shows variation.68 An alterna-
tive reason for the impaired HRDD in a proportion of individuals
with FMS is that spinal inhibitory function, and hence the degree
of HRDD, reflects a trait that could prime the development of pain
when triggered by an additional insult.

Limitations of this study include its cross-sectional design and
relatively small number of participants. In addition, our findings
relating to the duration of the disease were a representation of
time since diagnosis. As the duration of symptoms before
a confirmed FMS diagnosis is on average 5 years and is affected
by multiple factors, the precise onset is unlikely to be determined
to a single focal point.6,20 Furthermore, patients continued to take
pain medication during the assessment period, and this was not
systematically accounted for in the analysis. Medications would
be expected to impact pain ratings, and treatments with
antineuropathic pain drugs could potentially differentially alter
HRDD.71 Larger scale prospective studies, determining longitu-
dinal trends in HRDD, psychophysical parameters, and clinical
symptoms and scores over the time course of FMS disease, are
required. Larger studies are also needed to determine whether
HRDD differs between individuals with FMS with and without
small fibre pathology, although impairment of HRDD is not related
to the severity of small fibre neuropathy in individuals with diabetic
neuropathy.38,68 In addition, the response of HRDD to descend-
ing modulatory influences, eg, attention, and to antineuropathic
therapies that modulate spinal dysfunction/inhibition is required.

In conclusion, we have demonstrated that patients with FMS
have impairment of HRDD and therefore evidence of spinal
disinhibition. Furthermore, our findings provide evidence that
spinal inhibitory function is most impaired in patients with FMS in
short-duration disease. Further investigations to expand these
findings are needed, as identifying patients with impairment of
central pain processing at an early stage may provide opportu-
nities for time-dependent targeted mechanistic-based therapy.
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